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Recently, the concept of the exact orbital-dependent exchange was introduced into relativistic spin-density-
functional theory �RSDFT� within the collinear limit �D. Ködderitzsch et al., Phys. Rev. B 77, 045101 �2008��.
In this contribution we further expand this exact exchange �EXX� formalism by �i� extending the basic
equations to the general noncollinear form of RSDFT and �ii� discussing in detail the solution of the coupled
integral equations resulting from orbital-dependent functionals in the framework of RSDFT. The EXX scheme
is then applied to open-shell atoms in order to study �i� the relative importance of exchange splitting and
spin-orbit coupling, �ii� the consequences of the exact exchange for atomic hyperfine constants, and �iii� the
relative stability of the 3dn−14s2 and 3dn4s1 configurations in case of the 3d transition-metal elements. In
particular, it is demonstrated that the exact exchange, when combined with the orbital-dependent random-phase
approximation for correlation, yields s-d-transfer energies which are clearly superior to the values obtained
with conventional density functionals.
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I. INTRODUCTION AND SUMMARY OF RESULTS

Density functional calculations for magnetic systems are
usually based on nonrelativistic spin-density-functional
theory �SDFT� �Ref. 1� or extensions including a current
dependence2,3 �for recent applications see, e.g., Refs. 4–6�.
In practice SDFT is often combined with relativistic density-
functional theory �RDFT� �Ref. 7� �for an overview see Ref.
8�: as spin-orbit coupling cannot be completely neglected for
many interesting magnetic materials, nonrelativistic spin-
density functionals for the exchange-correlation �xc� energy
Exc are frequently utilized together with the Dirac-type
Kohn-Sham �KS� equations of RDFT.

This approach has been given a formal justification a long
time ago.9,10 In its most general form this RDFT approach
relies on the density n, the magnetization density m, and the
paramagnetic current density jp, which emerges as a conse-
quence of the Gordon decomposition of the physical current
of RDFT plus an independent coupling of m and jp to the
magnetic field. However, the formulation of xc functionals
depending on n, m, and jp simultaneously turned out to be
difficult, as the homogeneous electron gas does not lend it-
self as the starting point for the derivation of approximations.
For this reason the jp-dependence of Exc is usually ignored.
In the following, we will, for brevity, refer to this reduced
RDFT framework as relativistic spin-density-functional
theory �RSDFT� in spite of the fact that its fundamental vari-
ables are the density n and the magnetization density m.

Unfortunately, not even the local-density approximation
�LDA� for the associated Exc�n ,m� is available to date, only
its exchange-only �x-only� limit is known.11 In practice, cal-
culations therefore usually exploit RSDFT in the collinear
approximation in which m is assumed to have only one com-
ponent, m= �0,0 ,mz�. In this limit, one can easily identify

relativistic extensions of the spin densities of SDFT, n�

= 1
2 �n�r��mz�r� /�B�, and apply nonrelativistic spin-density

functionals with these n�. In addition, the solution of the KS
equations of RSDFT was found to be quite involved,12–17 so
that many calculations are based on indirect implementations
of RSDFT.

The difficulties with the derivation of suitable m and
jp-dependent functionals are automatically resolved, as soon
as one allows for orbital-dependent xc functionals as the ex-
act exchange �EXX� Ex �for an overview of the concept of
implicit xc functionals see Ref. 18�. Depending on the for-
malism in which such functionals are applied, their depen-
dence on the KS spinors �k translates into a dependence on
n, on n plus m, or on n plus m plus jp. Orbital-dependent
functionals are therefore perfectly suited for use in the
framework of R�S�DFT or current-density-functional
theory.4–6

Orbital-dependent xc functionals and in particular the ex-
act exchange are receiving increasing attention also for quite
different reasons. The main point is the fact that the EXX
resolves the most prominent problems resulting from the in-
complete cancellation of the self-interaction by conventional
density functionals as the LDA or the generalized gradient
approximation �GGA�. As a consequence of the complete
elimination of self-interaction one, e.g., obtains a Rydberg
series of unoccupied states for neutral atoms,19 implying the
existence of negative atomic ions.20 Many calculations with
the exact exchange also point at an improved description of
the band gaps of semiconductors,21–27 although this conclu-
sion has been questioned recently.28 Moreover, orbital-
dependent correlation functionals can successfully deal with
dispersion forces.29–33

The concept of orbital-dependent xc functionals has been
introduced into RDFT many years ago.29,34–36 However, only
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very recently the EXX scheme was implemented within
RSDFT �Ref. 37� �in the following this paper will be referred
to as I�. In I the basic EXX formalism was presented, re-
stricting the discussion to the collinear limit of RSDFT. In
this approach the xc potential and the z component of the xc
magnetic field are determined by simultaneous solution of
two coupled integral equations in direct extension of the op-
timized potential method �OPM� �Ref. 19� of nonrelativistic
DFT. In addition, the RSDFT analog of the Krieger-Li-
Iafrate approximation38 was derived in order to address the
computational inefficiency of EXX calculations on the basis
of the full OPM. Some prototype results for atoms were also
provided in I, demonstrating the practical feasibility of EXX
calculations and making contact to nonrelativistic SDFT.

In the present paper the EXX formalism is expanded and
analyzed in more detail �Sec. II�. We start with the extension
of the concept of orbital-dependent Exc to the general non-
collinear form of RSDFT. One finds that in this case four
coupled integral equations have to be solved in order to cal-
culate the xc potential vxc=�Exc /�n and the xc magnetic
field Bxc=�Exc /�m. Next we provide all necessary informa-
tion for the actual solution of the OPM integral equations of
collinear RSDFT, in this way completing the formalism in-
troduced in I. In particular, we discuss the construction of
orthogonal Green’s function Gk of RSDFT, which is the core
ingredient of the OPM integral equations. As in the nonrela-
tivistic context,19 Gk can be expressed in terms of the irregu-
lar solutions of the KS equations of RSDFT. Its form, how-
ever, turns out to be much more involved due to the intricate
structure of the underlying KS equations. On the basis of this
representation one can then prove that the exact exchange
potential of RSDFT approaches −1 / �r� in the asymptotic re-
gime of finite systems.

The formal developments presented here and in paper I
also provide a sound basis for the implementation of the
exact exchange in standard all-electron schemes for relativ-
istic electronic structure calculations for solids. The con-
struction scheme for Gk directly applies to the tightly bound
core states of a solid. A generalization of this scheme to
extended band states has recently been used for the discus-
sion of nonmagnetic metals.39 Its extension to spin-polarized
solids is under development. This should allow a comparison
with other solid-state OPM approaches in which the spin-
orbit coupling of the valence states is taken into account
either perturbatively within a Pauli-spinor formalism40 or in-
directly via relativistic pseudopotentials which induce spin-
orbit splitting into an otherwise nonrelativistic framework.41

In the second part of the paper �Sec. III� we investigate
the role of the exact exchange in the case of open-shell at-
oms. Three topics are addressed: �i� the relative importance
of exchange splitting and spin-orbit coupling, �ii� the accu-
racy of atomic hyperfine constants, and �iii� the relative sta-
bility of the 3dn−14s2 and 3dn4s1 configurations of the 3d
transition-metal elements, i.e., the energy associated with the
s-d-transfer process. It is found that, as one might have ex-
pected, the spin alignment favored by the exact exchange
dominates the KS spectrum over a wider range of Z than
observed for conventional density functionals. A prominent
example is Pb for which the states of the 6p shell are ordered
according to good total angular momentum j in case of the

LDA and GGA, while this ordering dissolves in the EXX
calculation. The modified balance between spin alignment
and spin-orbit coupling seems to improve in particular the
description of the 4d elements: for several of the 4d elements
the exact exchange provides a much better description of
hyperfine constants than the LDA or GGA. Similarly, the
EXX scheme yields improved s-d-transfer energies for the
3d elements. When combined with an orbital-dependent rep-
resentation of correlation in the form of the random-phase
approximation �RPA�,31,42–44 the resulting s-d-transfer ener-
gies closely follow their experimental counterparts through-
out the complete 3d shell. The maximum deviation is found
for Ti, for which the preference for the 3d24s2 configuration
is underestimated by 20 mhartree. However, in contrast to
the GGA, the orbital-dependent functional clearly predicts
the 3d24s2 configuration to be more stable than its 3d34s1

alternative. The agreement between EXX+RPA and experi-
ment is particularly good in the second half of the shell, for
which the identification of KS and experimental states is
unambiguous. The s-d-transfer energies of the 3d elements
thus provide another example for the scientific potential of
orbital-dependent xc functionals. �=e=1 is used throughout
this paper. The electron mass is denoted by me and not set to
1 in all formulas.

II. THEORY

There exist several approaches to RDFT, differing in the
set of fundamental densities exploited for the representation
of all relevant functionals �for an overview see Ref. 8�.
While only the “covariant” form,7 in which the ground-state
four current density j�= �n , j /c� is used, can be given a rig-
orous foundation in the framework of quantum
electrodynamics,8,45 a second variant turned out to be more
useful in practice. This approach9 relies on the density n and
magnetization density m and may be obtained from the four
current version of RDFT by use of the Gordon identity and
subsequent neglect of the paramagnetic contribution to j, so
that the dependence on j reduces to a dependence on �
�m. Here this latter approach is referred to as RSDFT in
spite of the fact that spin is not a good quantum number in
RSDFT.

The OPM has been formulated for both the four current
version of RDFT �Refs. 29 and 36� and, recently, for the
collinear limit of RSDFT,37 in which m is assumed to have
the form m= �0,0 ,mz�. We will thus start the discussion of
the OPM by a generalization of the latter approach to the
fully m-dependent noncollinear RSDFT formalism.

A. Relativistic spin-density-functional theory: Basics

The Dirac-type KS equations of noncollinear RSDFT are
given by8,9

�− ic� · � + �	 − 1�mec
2 + vs − �B	
 · Bs��k = �k�k, �1�

where vs denotes the standard total KS potential,

vs�r� = vext�r� + vH�r� + vxc�r� , �2�

vH�r� =� d3r�
n�r��

�r − r��
, �3�
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vxc�r� =
�Exc�n,m�

�n�r�
, �4�

the KS magnetic field Bs is given by

Bs�r� = Bext�r� + Bxc�r� , �5�

Bxc�r� =
�Exc�n,m�

�m�r�
, �6�

and the density n and magnetization density m are obtained
as

n�r� = 	
k

�k��k�r��2, �7�

m�r� = − �B	
k

�k�k
†�r�	
�k�r� 
 = 
� 0

0 �
� , �8�

�k = �1 if − mec
2 
 �k � �F

0 otherwise.

 �9�

The form of occupation numbers �k implies use of the no-
pair approximation, which is applied consistently throughout
this work. Moreover, the discussion is restricted to systems
without external magnetic field, Bext=0.

The crucial quantity of RSDFT is the xc functional
Exc�n ,m�. Unfortunately, only the LDA for exchange11 is
available in an explicitly m-dependent form, all other inher-
ently relativistic density functionals46–48 relying on n only.

The situation is much more favorable in case of implicit
orbital-dependent functionals as the exact exchange,

Ex = −
1

2	
k,l

�k�l�kl � lk� , �10�

�ij � kl� =� d3r� d3r�
�i

†�r��k�r�� j
†�r���l�r��

�r − r��
, �11�

for which the KS four spinors �k mediate the density depen-
dence: depending on the framework in which Ex is applied,
Eq. �10� represents a functional of n, of j� or, as in the
present situation, of �n ,m�.

The concept of implicit functionals can be directly ex-
tended to the relativistic correlation functional Ec, for which
an exact expression can be derived via standard Green’s-
function methods.29 In this case a dependence on all �occu-
pied and unoccupied� �k and the associated eigenvalues �k is
found.

B. OPM equations of RSDFT: Noncollinear version

Given an orbital-dependent functional as Eq. �10�, the ob-
vious first task is the formulation of the OPM equations
within the theory at hand �noncollinear RSDFT� in order to
determine the associated potential�s� �here vxc and Bxc�. Us-
ing the chain rule for functional differentiation one obtains

�Exc�n,m�
�vs�r�

=� d3r���n�r��
�vs�r�

�Exc

�n�r��
+

�m�r��
�vs�r�

�Exc

�m�r��

= 	

k
� d3r�

��k
†�r��

�vs�r�
�Exc

��k
†�r��

+ c.c., �12�

�Exc�n,m�
�Bs�r�

=� d3r�� �n�r��
�Bs�r�

�Exc

�n�r��
+

�m�r��
�Bs�r�

�Exc

�m�r��

= 	

k
� d3r�

��k
†�r��

�Bs�r�
�Exc

��k
†�r��

+ c.c., �13�

where a possible �k dependence of Exc has been ignored for
brevity �its incorporation can follow the scheme of Ref. 29�.
In order to evaluate the ingredients of Eqs. �12� and �13� one
has to determine the variation in the �k with the basic fields
in the KS equations �Eq. �1��. Following the basic procedure
of Ref. 19 one finds

��k�r�
�vs�r��

= − Gk�r,r���k�r�� , �14�

��k�r�
�Bs�r��

= �BGk�r,r��	
�k�r�� , �15�

with Green’s function

Gk�r,r�� = 	
l�k

�l�r��l
†�r��

�l − �k
. �16�

From Eqs. �7� and �8� one thus obtains for the response func-
tions of RSDFT,

�n�r��
�vs�r�

= �nn�r�,r� = − 	
k

�k�k
†�r��Gk�r�,r��k�r� + c.c.,

�17�

�m�r��
�vs�r�

= �mn�r�,r� = �B	
k

�k�k
†�r��	
Gk�r�,r��k�r� + c.c.,

�18�

�n�r��
�Bs�r�

= �nm�r�,r� = �B	
k

�k�k
†�r��Gk�r�,r�	
�k�r� + c.c.,

�19�

�m�r��
�Bs�r�

= �mm�r�,r� = − �B
2	

k

�k�k
†�r��	
Gk�r�,r�	
�k�r�

+ c.c. �20�

�note that �	
�†=
	=	
�. With Eqs. �14�, �15�, and �17�–
�20� one can rewrite Eqs. �12� and �13� as

� d3r���nn�r,r��vxc�r�� + �nm�r,r�� · Bxc�r���

= − 	
k
� d3r��k

†�r�Gk�r,r��
�Exc

��k
†�r��

+ c.c., �21�
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� d3r���mn�r,r��vxc�r�� + �mm�r,r�� · Bxc�r���

= �B	
k
� d3r��k

†�r�	
Gk�r,r��
�Exc

��k
†�r��

+ c.c. �22�

The collinear limit of the OPM equations �Eqs. �21� and
�22�� has been discussed in detail in I to which we refer the
interested reader. It can be directly obtained from Eqs. �21�
and �22� by dropping those components of �nm, �mm, and Bxc
which are assumed to be zero in the collinear limit.

C. Relativistic spin-density-functional theory: Atoms

In the simplest description of atoms within RSDFT �Refs.
13 and 14� one assumes m and Bxc to be collinear �noncol-
linear corrections have been shown to be small49� and both vs
and

Bxc � − �BBxc,z

to be spherical �which implies a suitable spherical averaging
procedure�. As a direct consequence, the z projection of the
total angular momentum, m, is a good quantum number, so
that the exact solutions of Eq. �1� may be expanded as

�k�r� =
1

r
	
lj

 ak

ljm�r�� j,l,m��,��
ibk

ljm�r�� j,2j−l,m��,��
� , �23�

� jlm = 	
�=�1/2

	
ml=−l

l 
lml
1

2
��jm�Ylml

��,����, �24�

where �lmls� � jm� denotes a Clebsch-Gordan coefficient in
the definition of Rose.50 In addition, one can show that the
coupling of states with different l is weak,13 so that l can also
serve as a “good” quantum number and only states with dif-
ferent j �but the same m� remain coupled in expansion �23�.
The specification of the RSDFT-KS equations for open sub-
shell atoms thus basically requires a distinction between
states with 2�m�=2l+1,

�nlm�r� =
1

r

 anlm�r��l+1/2,l,m��,��

ibnlm�r��l+1/2,l+1,m��,��
� , �25�

and states with 2�m�
2l+1,

�nlm��r� =
1

r
	

s=�1

 anlm�

s �r��l+s/2,l,m��,��
ibnlm�

s �r��l+s/2,l+s,m��,��
� . �26�

In order to formulate the KS equations for the �real� radial
spinors anlm, bnlm, anlm�

s , and bnlm�
s , resulting from insertion

of Eqs. �25� and �26� into Eq. �1�, it is most convenient to
combine all components into a single four component vector,

�k�r� =�
ak

+�r�
bk

+�r�
ak

−�r�
bk

−�r�
� , �27�

with the understanding that k�nlm� in case of 2�m�
2l
+1 and k�nlm, ak

+=ak , bk
+=bk, and ak

−=bk
−�0 for 2�m�

=2l+1. The KS equations can then be written as17

�Tl�r� + Vlm�r���k�r� = �k�k�r� , �28�

with

Tl�r� = c�
0 −

�

�r
−

l + 1

r
0 0

�

�r
−

l + 1

r
− 2mec 0 0

0 0 0 −
�

�r
+

l

r

0 0
�

�r
+

l

r
− 2mec

� ,

�29�

Vlm�r� = vs�r� + �lmBxc�r� , �30�

�lm =�
2m

2l + 1
0 Clm 0

0
2m

2l + 3
0 0

Clm 0 −
2m

2l + 1
0

0 0 0 −
2m

2l − 1

� , �31�

Clm = −
��2l + 1�2 − �2m�2�1/2

2l + 1
. �32�

The corresponding orthonormality and completeness rela-
tions are given by

�
0

�

dr�nlm�
† �r��n�lm���r� = �nn�����, �33�

	
n�

�nlm��r��nlm�
† �r�� = ��r − r�� , �34�

with obvious reductions for states with 2�m�=2l+1.
The densities n and mz are obtained by insertion of Eqs.

�25� and �26� into Eqs. �7� and �8� plus subsequent spherical
averaging �in order to be consistent with the assumption of
spherically symmetric potentials�,

n�r� =
1

4�r2	
k

�k�k
†�r��k�r� , �35�
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mz�r� = −
�B

4�r2	
k

�k�k
†�r��lm�k�r� . �36�

The Hartree energy corresponding to the KS states �25� and
�26� is obtained as

EH =
1

2	
k,l

�k�l�kl � kl� , �37�

with the Slater integrals �kl �kl� given by

�kl � kl� = �− 1�m+m�+1 	
s1,s2,s1�,s2�=�1

	
L=0

�
1 + �− 1�L

2�2L + 1�2�
0

�

dr�
0

�

dr�
r


L

r�
L+1 �anlm

s1 �r�anlm
s2 �r� + bnlm

s1 �r�bnlm
s2 �r��

��an�l�m�
s1� �r��an�l�m�

s2� �r�� + bn�l�m�
s1� �r��bn�l�m�

s2� �r�����2l + s1 + 1��2l + s2 + 1��2l� + s1� + 1��2l� + s2� + 1��1/2

�
�l +
s1

2
,
1

2
;l +

s2

2
,−

1

2
�L,0�
�l +

s1

2
,− m;l +

s2

2
,m�L,0�

�
l� +
s2�

2
,
1

2
;l� +

s1�

2
,�−

1

2
�L,0�
l� +

s2�

2
,− m�;l� +

s1�

2
,m��L,0� �38�

�r�=max�r ,r�� ;r
=min�r ,r���. Note that no spherical averaging is applied at this point—the angular integrations inherent in
�kl �kl� after use of the multipole expansion of the Coulomb interaction are performed without any modification. Only the
monopole contribution �L=0� to Slater integral �38� is included in the standard form of EH and vH for spherical systems,

EH =
�4��2

2
�

0

�

r2dr�
0

�

r�2dr�
n�r�n�r��

r�

⇔ vH�r� = 4��
0

�

r�2dr�
n�r��
r�

, �39�

with n�r� given by Eq. �35�. All other multipoles in Eq. �38� are usually absorbed into the exchange term.19,51

It remains to specify exchange energy �10� for the atomic states �25� and �26�. In this case the relevant Slater integral reads

�kl � lk� = 	
s1,s2,s1�,s2�=�1

	
L=0

�

	
M=−L

L

�M,m−m�
1 + �− 1�l+l�+L

2�2L + 1�2 �
0

�

dr�
0

�

dr�
r


L

r�
L+1 �anlm

s1 �r�an�l�m�
s1� �r� + bnlm

s1 �r�bn�l�m�
s1� �r��

��an�l�m�
s2� �r��anlm

s2 �r�� + bn�l�m�
s2� �r��bnlm

s2 �r�����2l + s1 + 1��2l� + s1� + 1��2l + s2 + 1��2l� + s2� + 1��1/2

�
l +
s1

2
,
1

2
;l� +

s1�

2
,�−

1

2
�L,0�
l +

s1

2
,− m;l� +

s1�

2
,m��L,m� − m�

�
l +
s2

2
,
1

2
;l� +

s2�

2
,�−

1

2
�L,0�
l +

s2

2
,− m;l� +

s2�

2
,m��L,m� − m� , �40�

with anlm
− =bnlm

− =0 for states with 2�m�=2l+1.

D. OPM equations of RSDFT: Spherical version

The simplest way to derive the radial OPM integral equa-
tions for the spherically symmetric system introduced in Sec.
II C is to consider the xc energy as an implicit functional of
spherical densities �35� and �36�, i.e., for Exc being an ex-
plicit functional of the radial spinors �Eq. �27�� only. More-
over, it turns out to be more convenient to formulate the
OPM in terms of the relativistic spin densities,

n��r� =
1

2
�n�r� �

mz�r�
�B

� = 	
k

�k�k
†�r�P��k�r� , �41�

with the projection operators

P� =
1

2
�1 � �lm� . �42�

The associated spin-dependent potentials are given by

vxc,��r� = vxc�r� � Bxc�r� , �43�

vs,��r� = vext�r� + vH�r� + vxc,��r� ⇔ Vlm�r� = 	
�=�

P�vs,��r� .

�44�

As discussed in Sec. II B the chain rule for functional
differentiation is applied to obtain
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�Exc�n+,n−�
�vs,��r�

= 	
��=�

�
0

�

dr�
��4�r�2n���r���

�vs,��r�
�Exc

��4�r�2n���r���

= 	
k
�

0

�

dr�
��k�r��
�vs,��r�

�Exc

��k�r��
. �45�

The crucial ingredient of Eq. �45�, ��k /�vs,�, is derived by
variation in the potentials in Eq. �28� using Eq. �44�. One
obtains

��k�r�
�vs,��r��

= − Gk�r,r��P��k�r�� , �46�

with Green’s function Gk satisfying

�T� l�r� + Vlm�r� − �k�Gk�r,r�� = ��r − r�� − �k�r��k
†�r�� .

�47�

The formal solution of Eq. �47� is given by

Gnlm��r,r�� = 	
n����n�

�n�lm���r��n�lm��
† �r��

�n�lm�� − �nlm�

, �48�

with the symmetry

Gk
†�r,r�� = Gk�r�,r� . �49�

From Eq. �46� one finds for the variation in the densities �Eq.
�41�� with the potentials

��4�r2n��r��
�vs,���r��

= �����r,r��

= − 2	
k

�k�k
†�r�P�Gk�r,r��P���k�r�� ,

�50�

where it has been used that �k, Gk, and �lm are real. Defining

Q��r� = − 	
k
�

0

�

dr��k
†�r�P�Gk�r,r��

�Exc

��k�r��
, �51�

one finally arrives at the coupled radial OPM equations for
spherical systems,

	
�=�

�
0

�

dr��+��r,r��vxc,��r�� = Q+�r� , �52�

	
�=�

�
0

�

dr��−��r,r��vxc,��r�� = Q−�r� . �53�

As in the general noncollinear case, a possible �k dependence
of Exc has been suppressed in the present derivation. It can,
however, be included straightforwardly, in close analogy to
Ref. 29. The next step toward the solution of Eqs. �52� and
�53� is an analysis of Green’s function Gk.

E. OPM equations of RSDFT: Radial Green’s function

In the case of spherical systems the evaluation of Green’s
function Gk needs not rely on Eq. �48�, which requires the

calculation of all occupied and unoccupied KS states. Rather
one can resort to a direct solution of the differential equation
�Eq. �47��. For the two component states with �2m�=2l+1
this solution can closely follow the scheme introduced in
Refs. 29 and 34. Its analog for the states with �2m�
2l+1 is
somewhat more tricky and therefore discussed in this sec-
tion.

One first notes that Eq. �48� together with the orthonor-
mality of the radial spinors �Eq. �33�� leads to

�
0

�

dr�Gk�r,r���k�r�� = 0. �54�

Next one introduces the additional non-normalizable solu-
tions of the KS equations �Eq. �28�� for given eigenvalue �k.
In case of states with �2m�
2l+1 one has four linearly in-
dependent solutions �k;j,

�Tl�r� + Vlm�r� − �k��k;j�r� = 0, j = 1,2,3,4. �55�

The physically interesting normalizable solution �k will be
identified with �k;1. The other three solutions will be charac-
terized in more detail later. For the moment only their linear
independence is of relevance. At this point it is most conve-
nient to drop the index k for the state, as the following analy-
sis applies to each state separately. For any pair of the � j �for
the same state k� one can easily show that

�r��i
†�r�i
2� j�r�� = 0 ∀ i, j . �56�

Equation �56� allows for the normalization

�i
†�r�i
2� j�r� = �ij ��ij = − � ji� , �57�

with the constants �ij still to be determined.
In order to construct Gk one next sets up the fundamental

matrix F corresponding to the radial KS equations �Eq. �27��,
i.e., a system of four coupled linear differential equations of
first order.52 Taking into account the difference in ordering
between the set of equations �Eq. �28�� and standard text-
book results, the fundamental matrix reads

F =�
− �2,1 − �2,2 − �2,3 − �2,4

�1,1 �1,2 �1,3 �1,4

− �4,1 − �4,2 − �4,3 − �4,4

�3,1 �3,2 �3,3 �3,4

� , �58�

with the understanding that �i,j is the ith component of the
jth solution of the eigenvalue problem with eigenvalue �k.
The determinant of the fundamental matrix is a constant as
the trace of the coefficient matrix of the set of linear differ-
ential equations �Eq. �28�� vanishes. The precise value of the
determinant must be consistent with the pair conditions �57�.
Using Eq. �57� to eliminate either components 3 and 4 or,
alternatively, components 1 and 2 of all solutions, one ob-
tains after combination of the two results

det�F� = �12�34 + �13�42 + �14�23, �59�

which illustrates the relation between the conserved pair
products �Eq. �57�� and the Wronski determinant.
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The core quantity of Green’s function is the product of the
fundamental matrix and its inverse, F�r�F−1�r��. The inverse
fundamental matrix may be formalized as

Fij
−1�r� =

1

det�F� 	n�i

�̄in� jn�r� �60�

with the �̄ik given by

�̄12 = �34, �̄13 = �42, �̄14 = �23,

�̄23 = �14, �̄24 = �31, �̄34 = �12. �61�

By construction one has

i
2 = i
2F�r�F−1�r� =
1

det�F�	i

�i�r�	
j�i

�̄ij� j
†�r� . �62�

The product of the fundamental matrix and its inverse at
different r values allows to set up Green’s function. With the
overall normalization

det�F� =
1

c2 , �63�

the function

��r,r�� = c	
i
j

���r − r���i�r��̄ij� j
†�r��

+ ��r� − r�� j�r��̄ij�i
†�r��� �64�

can be shown to satisfy

�T� l�r� + Vlm�r� − ����r,r�� = ��r − r�� �65�

and

�†�r�,r� = ��r,r�� . �66�

In terms of ��r ,r�� one can finally express Green’s func-
tion �48� as

G�r,r�� = ��r,r�� + C��r��†�r�� − �
0

�

dr���r,r����r���†�r��

− �
0

�

dr���r��†�r����r�,r�� , �67�

C = �
0

�

dr�
0

�

dr��†�r���r,r����r�� . �68�

On the basis of Eqs. �65� and �66� one can explicitly verify
that Green’s function �67� satisfies the differential equation
�Eq. �47�� and the boundary condition �Eq. �54��. Note that

the existence of form �67� requires all those �̄ij �with i
 j� to
vanish for which

�
r

�

dr��i
†�r����r��

does not exist.
This constraint as well as normalization �63� have to be

taken into account when choosing the coefficients �ij. The

simplest choice, which simultaneously reflects the general
symmetry of the problem, is

�12 = �34 =
1

c
, �69�

�13 = �42 = �14 = �23 = 0, �70�

so that

�̄ij = �ij , �71�

�̄ = � =
1

c
i
2, �72�

and thus

��r,r�� = ��r − r����1�r��2
†�r�� + �3�r��4

†�r���

+ ��r� − r���2�r��1
†�r�� + �4�r��3

†�r��� . �73�

It remains to construct the non-normalizable solutions �2,
�3, and �4 in accordance with Eqs. �69� and �70�. The lin-
early independent solutions of Eq. �55� are most conve-
niently characterized in terms of the boundary conditions for
small and large r values. Detailed analysis of Eq. �55� yields
the following elementary solutions for small r �to leading
order�:

�A = rg�
1

v−1

�g + l + 1�
0

0
��A

�0� + ¯ , �74�

�B = r−g�
v−1

�g + l + 1�
1

0

0
��B

�0� + ¯ , �75�

�C = r−f�
0

0

1

−
v−1

�f + l�
��C

�0� + ¯ , �76�

�D = rf�
0

0

−
v−1

�f + l�
1

��D
�0� + ¯ , �77�

with v−1=−Z /c,

g = ��l + 1�2 − v−1
2 �1/2, �78�
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f = �l2 − v−1
2 �1/2, �79�

and �A–D
�0� being constants to be determined by normalization.

One can verify directly that Eq. �57� holds for any pair of
these solutions. Note that in practice higher order corrections
stabilize the numerical treatment. Without giving any details,
we furthermore remark that for finite nuclear charge distri-
butions also logarithmic terms become relevant.

The discussion of the asymptotic solutions for large r de-
pends quite sensitively on the asymptotic form of the KS
potentials,

vs�r� =
v1

r
+

v2

r2 + ¯ , �80�

Bxc�r� = B0 +
B1

r
+

B2

r2 + ¯ . �81�

It turns out �see below� that the case B0=B1=0 is relevant in
the present situation. In this case one finds as elementary
solutions for large r,

�̄A = r�e−	r�
1

�

	c

0

0
��̄A

�0� + ¯ , �82�

�̄B = r−�e	r�
1

− �

	c

0

0
��̄B

�0� + ¯ , �83�

�̄C = r�e−	r�
0

0

1

�

	c
��̄C

�0� + ¯ , �84�

�̄D = r−�e	r�
0

0

1

− �

	c
��̄D

�0� + ¯ , �85�

with

� = −
�me + �/c2�v1

	
, �86�

	 = �− ��2me + �/c2��1/2. �87�

Again Eq. �57� is satisfied for any pair of the �̄ j.
The normalizable solution �=�1 is obtained by combina-

tion of the elementary solutions �A and �D at the origin and

�̄A and �̄C for large r.17 If integrated outward individually,
both �A and �D lead to solutions which diverge for r→�, at
least as long as c��. Only the combination of �A and �D
decays exponentially. Analogously, if �̄A and �̄C are inte-
grated inward individually, the results diverge at the origin,
provided that c��. In other words, all �A–D and �̄A–D indi-
vidually are linearly independent of � as long as c��. One
can thus choose

�1 = � , �88�

�3 = ��̄C if �̄A dominates in �

�̄A if �̄C dominates in � ,

 �89�

�4 = ��D if �A dominates in �

�A if �D dominates in � .

 �90�

Finally, �2 is chosen so that Eq. �57� is satisfied at the out-
ermost extremum of �, following the basic strategy of Ref.
19. The solution resulting from inward and outward integra-
tions starting at this point is then irregular both for r→0 and
for r→�.

For c→� this scheme can no longer be used as one finds
two fully regular solutions, reflecting the fact that orbital
�26� has to become an eigenstate of the spin operator. In this
limit, one can combine each of the two regular solutions
individually with a fully irregular solution following the ap-
proach for �2 discussed above.

F. Asymptotic behavior of exchange potential

In analogy to other variants of the OPM,19,29,38 represen-
tation �67� of Gk allows for a detailed analysis of the OPM
�Eqs. �52� and �53�� for large r. While the extended form of
�k �Eq. �73�� complicates the discussion, the asymptotic be-
havior of the regular and irregular solutions given in Sec.
II E provides all necessary information to follow the line of
arguments sketched in Appendix B of Ref. 29. As the discus-
sion is somewhat lengthy, it is relegated to the Appendix.

In the leading order the analysis leads to a Krieger-Li-
Iafrate-type identity38 for the exact exchange of RSDFT,

2 	
�=�

�
0

�

dr�†�r�P���r�vx,��r� = �
0

�

dr�†�r�
�Ex

���r�
.

�91�

The next to leading order then determines the asymptotic
behavior of vx,� for finite systems,

vx,��r → �� = −
1

r
. �92�

As in the nonrelativistic and in the spin-saturated limit, this
behavior leads to a Rydberg series of unoccupied KS states,
unlike the exponential decay of the LDA or GGA potential.

III. RESULTS

Neutral atoms have been extensively studied in the frame-
work of RSDFT on the basis of the LDA and GGA.16,17,49,53
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The question for the role of the exact exchange in the case of
atoms thus arises automatically. First atomic results obtained
by self-consistent calculations with the exact exchange
�EXX� have been presented in I, focusing on the relativistic
corrections to the xc magnetic field. In the following we
address three further topics, the relative importance of ex-
change splitting and spin-orbit coupling for the KS states,
atomic hyperfine constants, and the s-d-transfer energies of
the transition-metal elements.

All calculations have been done using finite difference
methods, which imply a discretization of the OPM integral
equations on the radial grid in analogy to Ref. 19. Large
logarithmic meshes �up to 1600 grid points� have been com-
bined with the Bulirsch-Stoer algorithm �see, e.g., Ref. 54�
for the solution of Eqs. �28� and �55�.

A. Spin-orbit coupling versus exchange splitting

The first obvious question addresses the relative impor-
tance of exchange versus spin-orbit effects. As the exact ex-
change yields more pronounced exchange splittings, i.e., fa-
vors spin polarization more than the LDA, one could expect
the KS eigenenergies to reflect this increased importance of
polarization compared to that of spin-orbit coupling. Figures
1–3 confirm this expectation.

Figure 1 shows the KS eigenvalues of the 3d subshell for
the 3d-transition-metal atoms, obtained for the lowest energy
state with the configuration 3dn4s2 for all of them. It is ob-
vious that �i� for given � all m� substates are essentially
degenerate, �ii� occupied states are stabilized substantially by
use of the exact Ex �with the stabilization being particularly
pronounced for the first half of the subshell�, and �iii� the
ordering of the states follows closely Hund’s first rule rather
than the splitting expected from spin-orbit coupling. The
only exception is Zn for which finally all 3d substates are
occupied.

When comparing these results with those for the 4d sub-
shell of the 4d elements �given in Fig. 2�, one observes a

broadening of the energies of the m� substates with the same
polarization. The ordering according to spin, however, re-
mains essentially intact, although the state m=− 5

2 splits from
the other majority-spin states somewhat earlier. This latter
effect is even more pronounced for the 5d eigenvalues of the
5d atoms, plotted in Fig. 3. In the case of the LDA spin-orbit
coupling now dominates the energetic ordering for the sec-
ond half of the subshell. On the other hand, if the exact
exchange is used, a substantial deviation of the − 5

2 eigen-
value from those of the remaining majority-spin states is
only observed for Au �and, of course, Hg�. The differences
between LDA and exact exchange are most obvious for the
6p series shown in Fig. 4.

In fact, for Pb the LDA essentially predicts a ground state
with good j. The corresponding magnetic moment vanishes,
so that the LDA does not reproduce the experimental 3P0
ground state. The exact exchange, on the other hand, favors
alignment of spins much more, so that the resulting energy
gain can compete with the energy gain originating from cou-
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FIG. 1. �Color online� KS eigenvalues of 3d subshell for 3d
elements with occupation 3dn4s2: exact x-only results �EXX� versus
LDA �Ref. 55� results.
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FIG. 2. �Color online� Same as in Fig. 1 for 4d elements with
occupation 4dn5s2.
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FIG. 3. �Color online� Same as in Fig. 1 for 5d elements with
occupation 5dn6s2.
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pling of spin and orbital angular momentum to good j. As a
consequence, the exact exchange leads to a ground state with
magnetic moment 2.035�B, i.e., essentially two aligned spins
as observed in experiment. Some reference data obtained
with the exact exchange in RSDFT are listed in Table I.

B. Hyperfine constants

Using the algebra of irreducible tensor operators,50 the
hyperfine coupling between the magnetic moment of the
nucleus and the magnetic field generated by the electrons at
the position of the nucleus �the origin� can be expressed as

ĤHF = − �I

�n,J,Jz�B̂z�n,J,Jz�
Jz

Î · Ĵ , �93�

where Î and Ĵ denote the total angular-momentum operators
of the nucleus and the electrons, respectively, �I is the gyro-
magnetic ratio of the nucleus,

�I =
�m,I,I��̂z�m,I,I�

I
, �94�

and both the nucleus and the electrons are assumed to be in
states with good total angular momentum and z projection,
�m , I , Iz� and �n ,J ,Jz�, respectively. The hyperfine coupling
constant a,

ĤHF = aÎ · Ĵ , �95�

is thus given by

a = − �I

�n,J,Jz�B̂z�n,J,Jz�
Jz

. �96�

However, the magnetic field produced by the electrons is
determined by the static electronic current j via the law of
Biot and Savart,

BHF�r� = �n,J,Jz�B̂�r��n,J,Jz� =
e

c
� d3r�j�r�� �

�r − r��
�r − r��3

.

�97�

As the current is one of the basic variables of relativistic
DFT, the field BHF generated by the ground state is a quantity
which can be rigorously evaluated within DFT. Insertion of
the relativistic KS current into Eq. �97� leads to

BHF�0� = e	
k

�k� d3r�k
†�r�

r � �

r3 �k�r� . �98�

Using the form of the atomic KS spinors of RSDFT �Eqs.
�25� and �26��, one can evaluate the angular integrations in
Eq. �98� to obtain

BHF�0� = �0,0,BHF� , �99�

BHF = e�
0

�

dr
1

r2 	
nlm�

�nlm�

��−
8m�l + 1�

�2l + 1��2l + 3�
anlm�

+ �r�bnlm�
+ �r�

+
8ml

�2l + 1��2l − 1�
anlm�

− �r�bnlm�
− �r�

− Clm�anlm�
+ �r�bnlm�

− �r�
+ anlm�

− �r�bnlm�
+ �r�

�
 . �100�

Figures 5–8 show some prototype results for the hyperfine
constant a obtained with the exact exchange in the frame-
work of RSDFT. For the evaluation of hyperfine field �100�
the KS ground state, i.e., the occupation of the m levels
which gives minimum total energy, has been used. It turns
out that for all atoms considered here the absolute value of

Jz = 	
nlm�

�nlm�m

associated with this state agrees with the total J of the true
ground state. Similarly, the absolute value of the �noninteger�
magnetic moment of the KS ground state,

Tl Pb Bi Po At Rn
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FIG. 4. �Color online� Same as in Fig. 1 for 6p elements with
occupation 6pn.

TABLE I. Total energy E, exchange energy Ex, eigenvalue of
highest occupied KS orbital �HOMO, and total magnetic moment
M =�d3rmz�r� of some prototype open-shell atoms. A point nucleus
is assumed �c=137.035 989 5 a.u., all energies in hartree, M in
�B�.

Atom −E −Ex

HOMO

−�HOMO Mnl m �

Al 242.3277 18.1010 3p + 1
2 + 0.2093 1.000

Fe 1271.5436 54.7684 4s + 1
2 0.2446 3.998

Eu 10 847.6694 238.9380 6s + 1
2 0.1769 6.990

Os 17 274.2850 333.4783 5d − 3
2 – 0.2450 3.927

Au 19 039.8067 357.3234 6s − 1
2 0.2957 0.997
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Mz =� d3rmz�r� ,

is always very close to the total spin of the true ground state.
For the nuclei the most prominent isotope with nonvan-

ishing a has been chosen. In order to account for the finite
size of the nuclei, a Fermi charge distribution56 has been
applied for the evaluation of vext. The resulting corrections,
however, are generally small compared to typical deviations
of RSDFT results from experimental data.

In Fig. 5 the hyperfine constants of the lanthanide series
are plotted, including numbers obtained with the LDA and
the Perdew-Burke-Ernzerhof �PBE�-GGA.57 It is immedi-
ately obvious that the RSDFT results follow the experimental
trend throughout the 4f subshell quite closely. The largest
deviations are observed for the lightest elements, 139La and
141Pr, as well as for the heaviest atom shown, 175Lu. While
for 139La and 175Lu all functionals give similar errors �with

the GGA being somewhat less accurate than LDA and EXX�,
the exact exchange overestimates the experimental a clearly
more than the LDA or GGA in the case of 141Pr. On the other
hand, for 153Eu and 159Tb the exact exchange is significantly
closer to the experimental values than the conventional xc
functionals.

Figures 6–8 complement these results by providing the
deviation of the RSDFT predictions for a from experiment
for the transition-metal elements �the trends throughout the d
shells are again well reproduced�. For most elements the ex-
act exchange leads to better agreement with the experimental
a than the conventional xc functionals, the improvement be-
ing particularly obvious for the 4d series. However, there is
also one noticeable exception, 51V. This clearly points at the
importance of correlation and orbital polarization for BHF.

C. s-d transfer energies of transition-metal elements

The description of the transfer of an electron from an
atomic s to a d orbital is a long-standing problem of
DFT.58–62 The relative stability of the two configurations in-
volved is determined by the s-d-transfer energy �E, which,
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FIG. 7. �Color online� As in Fig. 6 for 4d-transition-metal
elements.
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FIG. 8. �Color online� As in Fig. 6 for 5d-transition-metal
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FIG. 5. �Color online� Hyperfine constants a for lanthanide el-
ements: exact x-only �EXX�, LDA,55 and PBE-GGA �Ref. 57� re-
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FIG. 6. �Color online� Deviation of hyperfine constants a from
experimental value aexpt: exact x-only results �EXX� versus LDA
�Ref. 55� and PBE-GGA �Ref. 57� data for 3d-transition-metal
elements.

EXACT EXCHANGE IN RELATIVISTIC SPIN-DENSITY-… PHYSICAL REVIEW B 78, 235123 �2008�

235123-11



in the case of the 3d-transition-metal elements considered
here, is given by

�E = E�core,4s13dn� − E�core,4s23dn−1� .

The LDA overestimates the stability of the 4s13dn configu-
ration by typically 1 eV. On the other hand, it has been dem-
onstrated that the combination of total relativistic Hartree-
Fock energies with DFT correlation energies leads to much
better results.61 This immediately raises the question on how
the exact exchange of RSDFT performs.

In order to set the stage we first consider the lowest-lying
states of neutral chromium. The experimental excitation en-
ergies from the 3d5�6S�4s 7S3 ground state to the first-excited
state 3d5�6S�4s 5S2 and to the multiplet 3d44s2 5D are shown
in Fig. 9.

Due to their differing symmetries all three levels are ba-
sically accessible to DFT, the 3d5�6S�4s 5S involving the in-
version of the 4s spin and the 3d44s2 5D level the s-d transfer
process. As the total angular momentum J is not a good
quantum number within the present RSDFT approach, the
individual multiplet states of the 3d44s2 5D level �with val-
ues of J between 0 and 4� cannot be resolved rigorously.
Rather RSDFT provides states with given �Jz� between 0 and
4, depending on the occupation of the m� substates available
for the 3d level. These Jz-dependent KS states may be con-
sidered as resulting from the various multiplet states. In par-
ticular, the state with maximum �Jz�=4 can only be associ-
ated with J=4, thus providing rather unambiguous access to
one of the multiplet states. Moreover, as the KS states for
different Jz are not degenerate �see below�, one is tempted to
identify the single determinant KS state with �Jz�=J as the
KS representation of the multiplet state with total angular
momentum J. In any case, the range of energies obtained for
these KS states can be understood as a measure of the ex-
perimental multiplet splitting. The total energies resulting
from application of the exact exchange to all possible ways

to occupy the m� substates by four electrons with the same
spin are listed in Table II.

The energetic ordering of the states with respect to Jz is
exactly the same as that of the experimental energies with
respect to J, corroborating the identification of states indi-
cated above. Similarly, the spread of the total energies of
about 2 mhartree is close to the experimental multiplet split-
ting. In addition, the spread is much smaller than the differ-
ences between the 3d44s2 energies and the ground-state en-
ergy of −1049.8009 hartree.

The range of excitation energies covered by the various
occupations is indicated in Fig. 9, together with the EXX
excitation energy to the 3d5�6S�4s 5S state. The EXX values
turn out to be surprisingly close to their experimental coun-
terparts, unlike the GGA excitation energies—the first-
principles PBE-GGA shows the same type of deviation as the
LDA.

In fact, the EXX excitation energies are so close to the
correct values that one might wonder whether the agreement
still persists after inclusion of correlation. As Fig. 9 demon-
strates, this is not the case if GGA correlation is added to the
exact exchange. However, it is well known that the quality of
LDA and, to some extent, also GGA results is due to error
cancellation between exchange and correlation and that
therefore the combination of the exact exchange with LDA
or GGA correlation does not give convincing results.18

For this reason one has to resort to an equivalent orbital-
dependent representation of Ec at this point. So far, two types
of first-principles orbital-dependent correlation functionals
have been discussed in the literature, perturbation theory on
KS basis64–67 and the RPA as the simplest resummation of
the KS perturbation series.31,42,43,68 In view of the open sub-
shell nature of the states involved only the latter functional
can be used for the discussion of the s-d transfer. The RPA
can be expressed as

Ec
RPA =

1

2
�

0

� d�

�
�ln�det�1�� − S�� �i���� + Tr S�� �i��� , �101�

where

0
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FIG. 9. �Color online� Low-lying levels of chromium atom: ex-
act x-only results �EXX� versus data obtained from exact exchange
plus PBE-GGA �Ref. 57� for correlation �EXX+PBE� as well as
complete PBE-GGA and experimental numbers �Ref. 63�. The ex-
perimental 3d5�6S�4s 5S2 state is only 0.7 mhartree lower than the
lowest state �J=0� of the 3d44s2 5D multiplet and can therefore not
be resolved on the present scale.

TABLE II. Total energies E of all nonequivalent ways to gener-
ate the 3d44s2 5D configuration of Cr via occupation of different
m� substates with the same sign of the magnetization. All substates
with �=− and the substate with m= 5

2 remain unoccupied �all ener-
gies in hartree�.

Occupation

Jz

−E
�hartree�

m ,�=+ m

3
2

1
2 − 1

2 − 3
2 − 5

2

1 1 1 1 0 0 1049.7675

1 1 1 0 1 −1 1049.7669

1 1 0 1 1 −2 1049.7664

1 0 1 1 1 −3 1049.7658

0 1 1 1 1 −4 1049.7652
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Sik,jl�i�� = �kj � il�Cjl�i�� , �102�

Ckl�i�� = �k�1 − �l�
2��k − �l�

�2 + ��k − �l�2 , �103�

where �ij �kl� is given by Eq. �11� and the trace runs over the
multi-index ik of the matrix S�� .

As it stands, Ec
RPA is not particularly useful for the discus-

sion of finite systems as atoms and molecules, as for these
systems the second-order exchange �SOX� contributions are
sizable. In order to account for these short-range contribu-
tions not included in the RPA, Ec

RPA has been augmented by
the simplest approximation for the SOX energy,69,70

Ec
RPA+ = Ec

RPA + Ec
LDA − Ec

LDA−RPA, �104�

where Ec
LDA−RPA denotes the LDA for Ec

RPA. Ec
RPA+ has been

shown to give rather accurate correlation energies for
atoms.71

In the present study Ec
RPA+ has been evaluated perturba-

tively on the basis of nonrelativistic self-consistent EXX
solutions—the nonadditivity of relativistic and correlation
corrections is expected to be irrelevant for the 3d elements.
In order to be consistent with the present atomic RSDFT
solutions, a spherical average has been applied when evalu-
ating the KS potential of the 3d44s2 configuration. Only va-
lence and semicore states are included in the evaluation of
functional �104�, i.e., all excitations of the K- and L-shell
states are dropped in Eq. �101�. The latter states are not ex-
pected to change much with the rearrangement of the occu-
pation of the 3d and 4s states and only the energy difference
associated with this rearrangement is of interest at this point.
The RPA+ correlation energies obtained for the different
configurations in case of the chromium atom are listed in
Table III.

From the comparison of Tables II and III one, first of all,
concludes that the correlation contribution to �E is only
about half as large as the x-only value of �E. Moreover, the
spread of Ec

RPA+ among the various 3d44s2 configurations is
of the order of 10 mhartree and thus sizable. This makes the
identification of the nonrelativistic, relativistic, and experi-
mental states even more important. The nonrelativistic KS
state with minimum energy has an empty ml=−2 �majority-
spin� substate, with the total orbital angular momentum Lz

being antiparallel to the four aligned spins. This corresponds
exactly to the RSDFT state with total Jz=0 and an empty
m=− 5

2 substate, which is the relativistic EXX state of mini-
mum energy. The lowest energy EXX+RPA+ state of the
3d44s2 configuration thus has Jz=0, consistent with the J
=0 of the lowest experimental multiplet state. As the
minimum-energy KS state, it is a KS representation of the
lowest energy multiplet state. The corresponding EXX
+RPA+ s-d-transfer energy is given by −48 mhartree, which
has to be compared with the experimental value of
−35 mhartree. In spite of the significant error of 13 mhartree
this result represents clear progress over the GGA, which
predicts a �E of −71 mhartree

There is one further RSDFT state for which a unique non-
relativistic counterpart can be identified: the state with maxi-
mum �Jz�=4 corresponds to the nonrelativistic state with
�Lz�=2 and spin aligned with orbital angular momentum.
This KS state can only be associated with the multiplet state
with J=4. The s-d-transfer energies—EXX+RPA+:
−51 mhartree; experiment: −38 mhartree—show the same
deviation as observed for the minimum energies. This ex-
ample demonstrates that the overall accuracy of EXX trans-
fer energies is not particularly sensitive to the state chosen
for the comparison with experiment.

Let us now consider the complete 3d series. In the case of
the configuration 3dn4s we focus on that multiplet for which
the spins of the 3d electrons and that of the 4s electron are
aligned. For all elements other than Cr and Cu this aligned-
spin multiplet represents the first-excited level. It turns out
that for each of the aligned-spin 3dn4s configurations as well
as for each of the 3dn4s2 configurations of the complete 3d
series the value of �Jz� of the lowest energy RSDFT state is
identical with the experimentally observed J value of the
lowest energy multiplet state �as in the case of Cr discussed
above�. It is thus well justified to compare the RSDFT
s-d-transfer energy between the two lowest energy states
with the excitation energy between the two lowest multiplet
states. In fact, this is also the most consistent approach in
view of the basic philosophy behind DFT. Moreover, for the
multiplets of Mn and all heavier atoms this J value agrees
with the maximum J to which spin and orbital angular mo-
mentum can be coupled, so that the identification of states is
unambiguous anyway. For Sc to Cr, on the other hand, the
multiplet splittings of all states involved are below 2.5 mhar-

TABLE III. Low-lying states of Cr: RPA+ correlation and resulting RSDFT total energies EEXX+RPA+

=EEXX+Ec
RPA+ for various occupations of the ml substates of the 3d↑ level �all energies in hartree�.

Configuration

Occupation of 3d↑ ;ml

Lz Jz −Ec
RPA+ −EEXX+RPA+2 1 0 −1 −2

3d5↑ ;4s1↑ 1 1 1 1 1 0 3 0.6108 1050.4117

3d5↑ ;4s1↓ 1 1 1 1 1 0 2 0.6005 1050.3713

3d4↑ ;4s2 1 1 1 1 0 2 0 0.5959 1050.3634

3d4↑ ;4s2 1 1 1 0 1 1 1 0.5890 1050.3559

3d4↑ ;4s2 1 1 0 1 1 0 2 0.5857 1050.3521

3d4↑ ;4s2 1 0 1 1 1 1 3 0.5890 1050.3548

3d4↑ ;4s2 0 1 1 1 1 2 4 0.5959 1050.3611
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tree, so that a unique identification of states is not really
necessary—the overall accuracy of the EXX+RPA+ ap-
proach is clearly lower than 2.5 mhartree. The result of this
comparison is shown in Fig. 10, including EXX and PBE-
GGA data.

It is obvious that the EXX scheme reproduces the changes
in �E from one element to the next very well, with the
exception of the transition from Cr to Mn, i.e., for half-filled
d shell. The EXX s-d-transfer energies are extremely �fortu-
itously� close to the experimental �E for the first half of the
shell but substantially off for the heavier elements. This off-
set vanishes as soon as RPA+ correlation is included. �E is
now well reproduced throughout the shell. The agreement is
particularly close for the second half of the shell, for which
the identification of states is unambiguous. The most serious
deviation of the EXX+RPA+ results is observed for Ti. Nev-
ertheless, even in this case the EXX+RPA+ scheme predicts
the correct ground-state configuration, unlike the PBE-GGA.
Moreover, in the EXX+RPA+ approach the 3d34s2 and
3d44s1 configurations of V come out to be essentially degen-
erate, in contrast to the GGA which favors the 3d44s1 con-
figuration by 40 mhartree.

We have also examined the �E resulting from s-d transfer
between the states with maximum J. The results, however,
are almost indistinguishable from the values shown in Fig.
10 and therefore not plotted separately.

The EXX+RPA+ scheme thus represents clear progress
compared to the GGA. The remaining error could be associ-
ated with �i� higher order correlation contributions not in-
cluded in the RPA+, �ii� the LDA treatment of the SOX term,
�iii� the nonrelativistic evaluation of the RPA+ energies, and
�iv� the neglect of the paramagnetic current �i.e., of orbital
polarization�. The relative importance of these corrections
remains to be investigated.
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APPENDIX: ASYMPTOTIC BEHAVIOR OF EXCHANGE
POTENTIAL: EXPLICIT PROOF

In this appendix we give an explicit derivation of identity
�91� and the asymptotic behavior of vx �Eq. �92��, following
Appendix B of Ref. 29. We start by introducing a suitable
notation. Dropping the index k for the state under consider-
ation, utilizing Eq. �73�, and defining

Y0�r� = �†�r���r� , �A1�

Y j�r� = � j
†�r���r� for j = 1, . . . ,4, �A2�

Y0
��r� = �†�r�P���r� , �A3�

Y j
��r� = � j

†�r�P���r� for j = 1, . . . ,4, �A4�

Y j+4�r� = �
r

�

dr�Y j�r�� for j = 1,3, �A5�

Y j+4�r� = �
0

r

dr�Y j�r�� for j = 2,4, �A6�

Y9
��r� = Y1

��r�Y6�r� + Y3
��r�Y8�r� + Y2

��r�Y5�r� + Y4
��r�Y7�r�

−
C

2
Y0

��r� , �A7�

one can write the core ingredient of the response function as

�†�r�P�G�r,r��P����r�� = ��r − r���Y1
��r�Y2

���r��

+ Y3
��r�Y4

���r��� + ��r� − r�

��Y2
��r�Y1

���r�� + Y4
��r�Y3

���r���

− Y9
��r�Y0

���r�� − Y0
��r�Y9

���r�� .

�A8�

Similarly, one can formulate the contribution of a single KS
state to the right-hand side of the OPM equations as

�
0

�

dr��†�r�P�G�r,r��
�Ex

���r��
= Y1

��r�X6�r� + Y3
��r�X8�r�

+ Y2
��r�X5�r� + Y4

��r�X7�r�

− Y9
��r�EX − Y0

��r�PX ,

�A9�

with

Xj+4�r� = �
0

r

dr�� j
†�r��

�Ex

���r��
for j = 2,4, �A10�
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FIG. 10. �Color online� s-d-transfer energies of 3d elements:
exact x-only results �EXX� versus data obtained from exact ex-
change plus RPA+ for correlation �EXX-RPA+�, PBE-GGA �Ref.
57� and experimental numbers �Ref. 63� �RPA+ =RPA+ second-
order exchange within the LDA�.
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Xj+4�r� = �
r

�

dr�� j
†�r��

�Ex

���r��
for j = 1,3, �A11�

EX = �
0

�

dr��†�r��
�Ex

���r��
, �A12�

PX = �
0

�

dr���
0

�

dr��†�r����r�,r�� −
C

2
�†�r��� �Ex

���r��
.

�A13�

The asymptotic behavior of the Y j
��� is obtained by com-

bination of Eqs. �88�–�90� with Eqs. �82�–�85�. For the el-
ementary contractions and integrals one finds

Y j�r → �� = r2�e−2	rY j
�0� �j = 0,1,3� , �A14�

Y j�r → �� = Y j
�0� �j = 2,4� , �A15�

Y j
��r → �� = r2�e−2	rY j

��0� �j = 0,1,3� , �A16�

Y j
��r → �� = Y j

��0� �j = 2,4� , �A17�

Y j+4�r → �� = r2�e−2	rY j
�0�

2	
�j = 1,3� , �A18�

Y j+4�r → �� = Y j
�0�r �j = 2,4� , �A19�

where the abbreviations

Y j
�0� = �̄ j

�0�†�̄�0�, �A20�

Y j
��0� = �̄ j

�0�†P��̄�0� �A21�

have been introduced, with �̄ j
�0� denoting the four vectors

resulting from Eqs. �82�–�85�. Insertion into Eq. �A7� then
gives

Y9
��r → �� = r2�e−2	r��Y1

��0�Y2
�0� + Y3

��0�Y4
�0��r

+
Y2

��0�Y1
�0�

2	
+

Y4
��0�Y3

�0�

2	

�−
C

2
Y0

��0�� . �A22�

After insertion into the integral equation one can analyze
the individual contributions in order to identify the leading
term separately for each state k,

�
0

�

dr��†�r�P�G�r,r��P����r��vx,���r��

= − r2�+1e−2	r�Y1
��0�Y2

�0� + Y3
��0�Y4

�0��

��
0

�

dr�Y0
���r��vx,���r�� , �A23�

where it has been assumed that vx,��r� vanishes at least like

r−� with ��0. Equation �A25� neglects all terms which de-
cay faster than r2�+1e−2	r by at least a fractional power of r.
Similarly one obtains

�
0

�

dr��†�r�P�G�r,r��
�Ex

���r��

= r2�e−2	rY1
��0�X6�r� + r2�e−2	rY3

��0�X8�r� + Y2
��0�X5�r�

+ Y4
��0�X7�r� − r2�+1e−2	r�Y1

��0�Y2
�0� + Y3

��0�Y4
�0��EX

− r2�e−2	rY0
��0�PX . �A24�

The asymptotic behavior of �Ex /���r�� is dominated by the
exponential decay of the highest occupied orbital divided by
the associated lowest multipole denominator rL+1. The Fock-
type integrals Xj thus have the asymptotic form,

Xj+4�r → �� = r�h+�−1e−�	+	h�rXj+4
�0� for j = 1,3,

�A25�

Xj+4�r → �� = �r�h−�−1e�	−	h�rXj+4
�0� if k � h

ln�r�Xj+4
�0� otherwise



for j = 2,4, �A26�

where h denotes the highest occupied orbital. Note that for
k=h the monopole term of the self-interaction contribution,
which is proportional to 1 /r, dominates the integrand in Eq.
�A10�. After insertion of Eqs. �A27� and �A28� into Eq.
�A26� one can explicitly verify that only the highest occu-
pied orbital is relevant in the OPM equations �Eqs. �52� and
�53�� for large r,

0 = �
0

�

dr��†�r�P�G�r,r��

��2 	
��=�

P����r��vx,���r�� −
�Ex

���r��
 �A27�

�we have dropped the index h for brevity—the subsequent
discussion focuses on the highest occupied orbital only�.
Combining Eqs. �A25� and �A26� with Eq. �A29�, analysis of
the leading order leads to identity �91�.

Let us now analyze the next important terms. To this aim
we insert complete representations �A8� and �A9� into Eq.
�A29� in order to include all potentially relevant terms,

�
0

�

dr��†�r�P�G�r,r���2 	
��=�

P����r��vx,���r�� −
�Exc

���r��

= Y1

��r��2 	
��=�

�
0

r

dr�Y2
���r��vx,���r�� − X6�r��

+ Y3
��r��2 	

��=�

�
0

r

dr�Y4
���r��vx,���r�� − X8�r��

+ Y2
��r��2 	

��=�

�
r

�

dr�Y1
���r��vx,���r�� − X5�r��

EXACT EXCHANGE IN RELATIVISTIC SPIN-DENSITY-… PHYSICAL REVIEW B 78, 235123 �2008�

235123-15



+ Y4
��r��2 	

��=�

�
r

�

dr�Y3
���r��vx,���r�� − X7�r��

− Y9
��r��2 	

��=�

�
0

�

dr�Y0
���r��vx,���r�� − EX�

− Y0
��r��2 	

��=�

�
0

�

dr�Y9
���r��vx,���r�� − PX� .

Once Eq. �91� is used, the terms proportional to Y1
��r� and

Y3
��r� dominate asymptotically, as X6�r� and X8�r� diverge

logarithmically for large r, according to Eq. �A28�. Upon
insertion of the asymptotically leading terms of Y1

��r� and
Y3

��r� one thus has

0 = Y1
��0��2 	

��=�

�
0

r

dr�Y2
���r��vx,���r�� − X6�r��

+ Y3
��0��2 	

��=�

�
0

r

dr�Y4
���r��vx,���r�� − X8�r�� ,

which allows for differentiation,

0 = Y1
��0��2 	

��=�

Y2
���r�vx,���r� − �2

†�r�
�Exc

���r��
+ Y3

��0��2 	
��=�

Y4
���r�vx,���r� − �4

†�r�
�Exc

���r�� .

As this relation has to be satisfied for both �=� one ends up
with

2 	
��=�

Y2
���r�vx,���r� = �2

†�r�
�Exc

���r�
� X2�r� , �A28�

2 	
��=�

Y4
���r�vx,���r� = �4

†�r�
�Exc

���r�
� X4�r� , �A29�

and thus

vx,+�r → �� =
1

2

X2�r�Y4
−�r� − X4�r�Y2

−�r�
Y2

+�r�Y4
−�r� − Y2

−�r�Y4
+�r�

, �A30�

vx,−�r → �� =
1

2

Y2
+�r�X4�r� − Y4

+�r�X2�r�
Y2

+�r�Y4
−�r� − Y2

−�r�Y4
+�r�

. �A31�

Asymptotically, X2�r� and X4�r� are dominated by the mono-
pole contribution to the self-interaction correction energy of
the highest occupied orbital,

X2�r → �� = −
2

r
Y2�r� = −

2

r
�Y2

+�r� + Y2
−�r�� , �A32�

X4�r → �� = −
2

r
Y4�r� = −

2

r
�Y4

+�r� + Y4
−�r�� . �A33�

Insertion into Eqs. �A32� and �A33� finally leads to Eq. �92�.
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